domingo, 30 de noviembre de 2014

AXIOMAS Y TEOREMAS

Para el cálculo de probabilidades hay que tomar en cuenta los Axiomas y Teoremas que a continuación se enumeran.

1)La probabilidad de que ocurra un evento A cualquiera se encuentra entre cero y uno.

£ p(A) ³ 1

2)La probabilidad de que ocurra el espacio muestral d debe de ser 1.

                                                           p(d) = 1

3)Si A y B son eventos mutuamente excluyentes, entonces la p(AÈB) = p(A) + p(B)
                                  
Generalizando:

Si se tienen n eventos mutuamente excluyentes o exclusivos A1, A2, A3,.....An, entonces;

p(A1ÈA2È.........ÈAn) = p(A1) + p(A2) + .......+ p(An)

TEOREMAS

d
 
TEOREMA 1. Si f es un evento nulo o vacío, entonces la probabilidad de que ocurra f debe ser cero.

A

 
                                                                 p(f)=0
                                                                                                                  



DEMOSTRACIÓN:
Si sumamos a fun evento A cualquiera, como f y A son dos eventos mutuamente excluyentes, entonces p(AfÈ)=p(A) +p(f)=p(A). LQQD


TEOREMA 2. La probabilidad del complemento de A, Ac debe ser, p(Ac)= 1 – p(A)











DEMOSTRACIÓN:
Si el espacio muestral d, se divide en dos eventos mutuamente exclusivos, A y Ac luego d=AÈAc, por tanto p(d)=p(A) + p(Ac) y como en el axioma dos se afirma que p(d)=1, por tanto, p(Ac)= 1 - p(A) .LQQD

TEOREMA 3. Si un evento A Ì B, entonces la p(A) £ p(B).










DEMOSTRACIÓN:
Si separamos el evento B en dos eventos mutuamente excluyentes, A y B \ A (B menos A), por tanto, B=AÈ(B \ A) y p(B)=p(A) +p(B \ A), luego entonces si p(B \ A)³0 entonces se cumple que p(A)£p(B). LQQD





TEOREMA 4. La p( A \ B )= p(A) – p(AÇB)








DEMOSTRACIÓN: Si A y B son  dos eventos cualquiera, entonces el evento A se puede separar en dos eventos mutuamente excluyentes, (A \ B) y AÇB, por tanto, A=(A \ B)È(AÇB), luego p(A)=p(A \ B) + p(AÇB), entonces, p(A \ B) = p(A) – p(AÇB).  LQQD


TEOREMA 5. Para dos eventos A y B, p(AÈB)=p(A) + p(B) – p(AÇB).











DEMOSTRACIÓN:
Si AÈB = (A \ B) È B, donde (A \ B) y B son eventos mutuamente excluyentes, por lo que p(A È B) = p(A \ B) + p(B) y del teorema anterior tomamos que p(A \ B) = p(A) – p(AÇB), por tanto, p(AÈB) = p(A) + p(B) – p(AÇB). LQQD

COROLARIO:

AÇBÇC

 
AÇB
 
Para tres eventos A, B y C, p(AÈBÈC) = p(A) + p(B) + p(C) – p(AÇB) – p(AÇC) – (BÇC) + p(AÇBÇC).














No hay comentarios:

Publicar un comentario